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The paper uses the method of reference [l] to develop a theory for anisotro- 
Pit plates, 
the 

according to which the stresses a,&a,,p=i,Z) are expressed In 
form of series of Legendre polynomials p,\.&) . 

The results of Relssner [2 and 33 are used In the derivation of the dlf- 
ferentlal equations and boundary conditions. In contrast to other theories 
of anlsotroplc plates which do not use Klrchhoff's hypoteses c4 and 51, the 
present theory makes It possible to take Into account more accurately elas- 
tic effects at the edge of the plate (edge effects). 

Another method for the derivation of the theory of Isotropic plates and 
shallow shells based on the use of series of Legendre polynomials is described 
in C61. 

1. Consider a plate 3f constant thickness 2h . We denote the metric 

tensor of the middle plane of the plate by g,p referred to curvilinear 

coordinates xa (a = 1,2); z is the distance of an arbitrary point In the 

plate to the middle surface (- h < z\( h); V, denotes a covarlant derlva- 

tive iii the metric on the middle plane. Throughout, Greek indices In tensor 

notation assume the values 1 and 2. Other indices are enclosed in paren- 

theses, and their position, whether upper or lower, does not.alter the mean- 

ing of the appropriate symbol. 

We assume that the material of the plate has at all points a plane of 

elastic symmetry parallel to the middle dlane. 

The strain tensors cap, e,,, e,, and the stress tensors &p, Oaz, cJzz are 

related by Hooke's law 

cap = aapnpO =p + aapczzz, eaz = b,,Q, 

ezz = a,p@+ aa,, 

Here aaPnp, sop, b rrp and a are tensors of the strain components. We 

shall assuini that they are Independent of z . 

We shall now consider a state of stress In the plate which is antlsym- 

metric about the middle plane; analogous results can easily be obtained 

for the symmetrical case. 
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We represent the stresses ~&a in the form of series of Legendre polyno- 

From the equations of equilibrium and the conditions on the planes z = f h 

%z = 0, ozz = f V$?P (Z=&hh) 

we have the following expressions for the remaining stresses El]: 

u h 2 i’ak-a 4k _ 1 (5) - Pak tz) 
0.2 = un(k) 

k=l 

zp,,_, (51 'ak+l(c) 
(4k - 3) (4k + 1) + (4k - 1) (4k + 1) I % 

(kC0) (4.2) 
and an equation equivalent to the equilibrium equation in terms of stresses 

2/sh2V,olpj + p = 0 0.3) 

We introduce the infinite matrices 

II = 11 dik /I( D = ID dik = &$ , 6ik = {y ~~~~T 

A = II aik Ii, A’ = IA, aik = - 
6i-1, k 

(4i-5)(4i--33)(4i-1) + 

+ (4i 24‘9 - - 3) (4 - 2) (4i + 1) (4i’3_ 6; k_L (i, k=l, 2, 3,. . (4i - 1) 1) (hi + 3) 
.) 

13 = 11 bit Ii, b,k= 0, bik = %-2, k - (4i- 9)(4i -7)(4i -5)(4i -3)(4i - 1) 

46i-1, k 

- (4i- 7)(4i - 5)(4i - 3)(4'- 1)(4i + 1): + 

6% 
+,(4i-- 5)(4i-3)(4i- I)(4 +1)(&+ 3) - 

46i, k-l - 
(4i-- 3) (4i-1) (4i + 1)(4i + 3)(4i + 5) + 

'i, k-a 

+ (4i --1)(4i + 1)(4i + 3) (4i+ 5)(4i +7) 

i = 2, 3,... 
k=l, 2,... 

Here 1 is an infinite diagonal matrix in which all the elements of the 

leading diagonal are unity except the first, which is zero. 

In addition, we Introduce the vectors C&p, G,*and CT defined by 

C&p = (a$', a$', . . .), (To = (a,“’ ) qp , . . .), 0 = ((J(l), O(2) t * * .I 

so that from (1.2) we have 

@ = v u=a P * a = V,iF 

Proceeding as In Cl], we obtain Equations 
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and the 

+ v~ @‘~a %,n)l + 1&,h2&ficr~2~ + ‘l,hV,Vp = - llspaap 
auPnFD’uxp - h2A’ [aapa + v,v, (u,~‘~cF) + 

0.4) 

+ VR (bx~‘d + Vp (bmu~)J + h%V,Vp (aa) = 0 
homogeneous geometrical boundary conditions 

2h2nab a@ ‘A’@ - h2naA’ (n” m 8) 

h2aBo - a,pA’cr’2fi = 0 

The corresponding static boundary conditions are 

c&@z%~ = ffnn, c&pn”s~ = O*s, a,rF = C Ti (1.6) 

Here no are the contravariant components of the vector of the unit exter- 

nal normal to the boundary of the middle plane of the plate, sa are the com- 

ponents of the unit tangential vector. A scalar function m is introduced 

as 2n Cl], and represents the characteristic deflection of the planes a=+h. 

The symbol (na - sz) indicates that there exist relations which can be 

obtained from those quoted by repLacing na by s” , 

2. Consider a homogeneous transversely isotropic plate*the plane of ISO- 

tropy of which coincides with the middle plane. E, E=, V, vL denote the 

Youngb moduli and Poisson’s ratios for directions in the plane of isotropy 

and for directions perpendicular to this plane; G represents the shear 

modulus for planes perpendicular to the plane of isotropy. The tensors of 

strain coefficients have the form 

We introduce functions of the stresses o - ((ofI), o)(s) , . . .) and 

@ = (@(I,, @,,,V..). For this purpose we resolve the vector u a 
into a poten- 

tial and a rotational part, setting 

0, = & i- %, fa = V,d-1, z, - E.,@VpW 

tDI = (t,(1), t,(2), . * .), z, = (z,(l), T,(2) 
(2.2) 

‘I.. . > 

Here &.,s is the mixed form of the discriminant 

%a = 0, 

Substituting (2.1) and 

a12 = - 821 - - l/c = JG&, - g12 

(2.2) into (1.3) and (1.4), we obtain Equations 

z/,h2A~~,t $- p = 0 (2.3) 
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l/s [(I + v) (o,b” - z$‘) - Ygopun(; 1 + ‘/aEh v,vpw - 
- 21,,h2Ec-1v,vpa-+~) + ‘@z2EG-‘V,Vp~(~) - 
- ‘!lurv*h2EEL-‘g,PA~~a) - l!rvsEE,-lg,pp == 0 (2.4) 

(1 + v) D’ (Q - z,& - vg=pD’o= - h2EG-1A’V,V#D + 

+ h2EvzE,-l A’ (g=@AQ, + V,V,u,=) + Eh4EL-1BV,VeAQ, = 0 

(A = g=%aVb 1 

where Z,p = (I$, Zdpa', . . .) denotes the tensor 

Dz=~ = 2 i1 TV, G V, (e$V,Ao i- e:VpAo) (2.5) 

We Impose the requirement that the tepsor (2.5) satisfies the relation 

VP@ = p = SkVpo 

We then obtain the following relation for determining u : 

D- 
EhPA 

2 (I+ VI c A) 
0-O (2.6) 

We now set a,p - Z,g = tap. From (2.5) and (2.2) we have that 

o= = = t==, vpt=P S t= 

Consequently, of the unknown functions, Equations (2.3) and (2.4) contain 

only t,p and w . 

Thus the tensor uaP Is expressed as the sum of two t'ensors, z=~ and taP . 
The former can be determined from Formula (2.5), in which the vector UI must 
safls y Equation (2.6) and has the prope‘rty that z a =0 and that the vector 

VP7 
=$ 1s solenoldal. The second tensor t,p Is &racterlzed only by the 

fact that Its divergence vpf=@ Is a potent&& vector. 

In order to express the tensor t=p in terms of @ and w and obtain 

equations for finding these functions, we take the contravarlant derivative 

of (2.4) with the subsequent contraction. As a result we obtain 

i+v 
3 (I+,, - f t& + 4 Aw- 2h’ E 15 (&+)I', + 

+$s(+3A@c2, = 0 G-7) 

(1 + v) D’CD - vD’t== - h2(~-~)A’AO+~A’At==+~BAA~=0 

Subtracting from these equations the result of the contraction of (2.4) 

with the metric tensor, we obtaln 

Dt,” = (1 -I- v) DCP - h2EE,-‘vzAA@ 

Ellmlnatlng ta= from (2.7) and (2.4) with the aid of this ,relatlon we 

find that 
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- (I + v) wt,p = - Y (I + Y) gapD’ + ; vz (i + v) h2el’,e?pV,V,A’ - 

$ - 2’vf (1 + v) ; 
z > 

h2V,VpA’ -+- f 1 
I 

- ‘; v,2 
> 

h4V,VpAB cp (2.11) 
z 

Equations {2.8), (2.9) and (2.3) from a system of equations for determin- 

ing w and * , and Formulas (2.10) and (2.11) define &a In terms of these 

functions. 

3. We shall solve the problem by the-method of asymptotic Integration of 
equations having derivatives multiplied by a small parameter [7 and 83; the 

half thickness of the plate h is assumed to be small compared with the 

characteristic linear dimension a of the middle plane. Xt is assumed that 

the parameters of the problem and the required solution are sufficiently 

smooth functions of a point on the middle plane. 

We seek the integrals of the basic state of stress, which do not vary 

rapidly (the regular terms of the asymptote), in the form of the expansions 

l-r,(g) = h-2 @J,p + h(&jjX-lQ . * .), w = h-3 (z&f) + hu(~)_t . . .) (3.1) 

If we now substitute (3.1) into Equations (2.3) and (2.4) and equate to 

zero the sum of terms with equal powers of h , we obtain a recurrentsequence 

of equations for determining the functions o,r), w(s). These equatlonsreduce 

to no~omogeneous biharmonic equations and in a first approximation coincide 

with the equations of the theory. 

In order to obtain integrals of the boundary-layer type (ordinary edge- 

effects) we introduce a local orthogonal system of coordinates .x1= r, &=a=, 

in the neighborhood of the boundary I' of the region occupied by the middle 

plane, where r Is the distance from points on the curve I' along the exter- 

nal normal and a Is the arc-length along the curve r . 

Returnig to Equations (2.6), let us take D and A to represent trun- 

cated matrices of order m , and u) to represent an m-dimenslonal vector. 
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We expand the hplacian operator 173 In the neighborhood of the boundary r 

In powers of h 

k'A=~+~~+h'(~--~)+... (r=/zt) (3.2) 

Here A Is the radius of curvature of the curve r . 

We seek the vector w of the boundary-layer type In the form of the 

expansion 
0 = ha (o(O) + ho(l) + . . .) (3.3) 

(0 Is an Integer). If substitute (3.2) and (3.3) into Equation (2.6) 

and equate to zero the sum of equal powers of h , we obtain a recurrent 

sequence of ordinary linear differential equations with constant coefficients 

( 8 appears as a parameter). It is required of the solutions to these equa- 

tions that they are of the boundary-layer type, and to obtain them we use the 

positive r6ots of the characteristic equation 

D- 
E?? 

2 (1 + Y)G 
A =O 

This equation has m positive roots so that the Integrals (3.3) of the 

boundary-layer type have m degrees of freedom at the boundary (for t = 0). 

The solution of the boundary-layer type to the homogeneous equations (2.3) 

and (2.9) (with P = 0) Is found In an analogous way 

Q(1) = 0, Q(k) = hb (@(a, (') + hO$) + . . .) (k = 2, 3, . . ., m) (3.4) 
Here b Is an Integer. 

It can be shown that Integrals (3.4) of the boundary-layer type have 

+&I - 2 degrees of freedom at the bouridary (for t = 0), I.e. the correspond- 

ing characteristic equation has 2?n - 2 roots with positive real parts. 

Having determined the functions C&, of the boundary-layer type we find 

from (2.8) and (2.10) the boundary-layer functions 

The boundary-layer functions Z,p and t$' (k=2,3,..., m) can be found 
from Formulas (2.5) and (2.11). 

The regular terms of the asymptote In each approximation can be subjected 
to two boundary conditions; ~VJ - 2 boundary conditions can be satisfied 
with the aid of Integrals of the boundary-layer functions (3.3) and (3.4). 
Thus, by means of the integrals obtained we can satisfy the ~VZ boundary 
conditions which are obtained from (1.5) and (1.6) by retaining In the series 
(1.1) the first VI terms. 

The boundary conditions must be satisfied by a process of superposition 
C81. !Che regular terms of the asymptote and the boundary-layer functions 
are substituted In the boundary conditions of the problem and then the lnte- 
gers Q and b (appearing In (3.3) and (3.4)) are selected In an approprl- 

In this way a recurrent system of linear al ebralc equations can 
ba:eoEzd for finding the constants of Integration In 83.3) and (3.4) and 
the boundary conditions can be specified for subsequently Geterminlng the 
regular terms of the asymptote. The latter, which determine the basic state 
of stress in the plate, and the boundary-layer functions, which determine 
the edge effects, are interrelated: the latter are determined by the former 
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and the behavior of the boundary-layer functions a(l)~c)(s)~ Q, (3) at the boundary 
determines the boundary conditions for the regular terms- of the asymptote. 

The asymptotic investigation of the state of stress in a plate leads to 
conclusions obtained by other methods [g to 121 for isotropic plates. Cut- 
side a narrow,edge zone the error In Klrchhoff’s hypotheses is of the order 
of h compared with c - the characteristic dimension of the middle plane. 
Close to the boundary the shear stresses and the stresses normal to the mld- 
dle plane, namely aolL and ozz which are ignored In the classical theory, 
are of the same order as u Therefore the error in Klrchhoff’s hypo- 
theses near the boundary fo “F’ sufficiently small h can be considerable. 

4. In the theory of anisotropic plates by Ambartsumian [4 and 51 and also 
in the theory by Reissner [2 and 31 one edge effect c+l) Is taken Into account. 
In contrast to these theories the present study enables a solution to be found 
with any finite number of edge effects. 

The ordinary linear differential equations, to the solution of which one 
reduces the derivation of the boundary-layer functions, are Independent of 
the geomerty of the plate and can be Integrated once and for all. For pur- 
poses of practical computation It Is sufficient to solve these equations for 
small values of m since the boudary-layer functions o(k) and Q)(kjfor large 
k are rapidly damped and their effect on the basic state of stress is con- 
siderably reduced. 

An investigation of problems of bending of plates for various support con- 
ditions (full fixlty, simple support) shows that In the second and third 
approximations the effect of the boundary-layer functions D(k) on the basic 
state of stress Is only slight. It disappears completely II’ Poisson’s ratio 
v. is zero. For example, for a circular plate of radius c under a uniform 
load of Intensity p and with built-in edges we have as a second approxlma- 
tion for the deflection function 

2 -v2 3p 
w = - y-g(‘Z - n2) [(r2 - a2) + UhC] Eh3 

(C = const) 

where r is the distance from the centre of the circle. 

The second term in the square brackets applies the correction to the clas- 
sical theory which results from taking Into account the boundary-layer func- 
tion @(e,. For an Isotropic plate and for v = 0.3 we have that C :: 0.05. 
For an anisotropic plate with material properties E/E,= 7/5, v,=0.5, v = 0, 
E/G = 0.7, C E 0.19. 

Let us take one further example. Consider a rectangular plate (a X b) 
under the action of a load given by 

p = qsin(sla:/a)sin(ny/b) 

Here 4 is the load Intensity at the centre (x = +a, y = +b). The plate 
Is freely supported at the edges. At x = 0 we have that u,, = 0 and the 
remainder of the boundary is fixed against displacements tangential to the 
contour. 

Here, in the second approximation only m(k), has an effect on the basic 
state of stress. We obtain the following exuresslon for the deflection I _ 
function m : 

w = w. sin zs3in y + w,A (1 - E 
v)$ 2(l+v)G i i 

=/a ny f.&*Eco*?%_ sin 7 
[ a b b 

a sinb(Jcx / b) x - --’ 

b$j$(nalb) 
b&?_ 

b 1 
Here 

m? 
is the deflection at the center of the place as given by the 

classical heory and A Is a constant. The second term, which depends on 
the ratio h/c, gives a correction to the classical theory. The numerical 
coefficient A has the value 0.631 if the ed e effects are taken Into 
account (m = & According to theories [3 to 5 
effect A = JfO.4 z 0.6325. 

7 which consider one edge 
Thus the second edge effect Introduces only a 

minor correction to the’value of the constant A . The correction of the 
basic state of stress which in the other problems results from taking Into 
account the boundary-layer functions m)(k), Is insignificant and theories 
[3 to 51 can therefore be applied to obtain the first correction to the basic 
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state of stress as given by the classical theory. 
rection Increases with Increase in the ratio E/G 

The magnltlde of this cor- 
and can become significant 

for strongly anlsotroplc plates with large values of E/G 
However, theories [3 to 51 cannot give a correct representation of the 

state of stress In a plate close to Its edges mainly because they take no 
account of any stress state associated with the boundary-layer function CD(,). 
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