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The paper uses the method of reference [1] to develop a theory for anisotro-
plc plates, according to which the stresses 0@3@1a3== 1,2) are expressed in
the form of series of Legendre polynomials p,\z/kh) .

The results of Relssner [2 and 3] are used in the derivatlon of the dif-
ferential equations and boundary condltions. In contrast to other theorles
of anisotropic plates which do not use Kirchhoff's hypoteses [4 and 5], the
present theory makes 1t posslble to take Into account more accurately elas-
tic effects at the edge of the plate (edge effects).

Another method for the derivation of the theory of isotroplc plates and
sha%é?w shells based on the use of serles of Legendre polynomials is described
in .

1. Consider a plate of constant thlckness 2h . We denote the metric
tensor of the middle plane of the plate by 8ag referred to curvilinear
coordinates % (e = 1,2); =z 1s the distance of an arbltrary point in the
plate to the middle surface (— h < z<( h); V, denotes a covariant deriva-
tive iin the metric on the middle plane. Throughout, Greek indices in tensor
notation assume the values 1 and 2., Other indices are enclosed in paren-
theses, and their position, whether upper or lower, does not .alter the mean-
ing of the appropriate symbol.

We assume that the material of the plate has at all polnts a plane of
elastic symmetry parallel to the mlddle plane.

The strain tensors ¢gup, €z, €;; and the stress tensors Oup, Oazy Ozz are
related by Hooke's law
€ap == Qapnp0™® + Q3022 Caz = baBOiB’
€z = Qap0®P- a0y,
Here Qupnp, Gap, Dap 8nd o are tensors of the strain components. We

shall assume that they are lndependent of 2 .

We shall now consider a state of stress in the plate which is antisym-
metric about the mlddle plane; analogous results can easily be obtained
for the symmetrical case.
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We represent the stresses Tap in the form of serles of Legendre polyno-
mlals -]
—_ (k)
Oap= D) Gap Py (L) (z=h —1<ES 1) (.1
k:l
From the equations of equllibrium and the conditions on the planes z = + h

Gz = 0, Gz = + Yyp (z=1-h)
we have the following expressions for the remaining stresses [1]:

; P
Oaz = h Z = 2(%:_1 w ) AU

- P53 (%) 2Py 4 (D) Py (8) ]
0::=h 524 [ Gh—3)Gk—1)  (@GE—3)(k+ 1) @G GEFD | %W
g

afB x€, —
G(k)a = VQG(A-) , Sy = Vas(k) ; Py ({:) =0 (kDY (12)
and an equatipn equivalent to the equllibrium equation in terms of stresses
2?0 + p = 0 1.3)

We introduce the infinite matrices

D::"dik”f D =1ID di}g—_—'m’ 6511{:{1 (k:l)
. , i1, k
A=ay|, A =IA4, Uk = T TR G =G =D T
28, 8 ket
T EHE—nGE Ty G=ha@rnEry GE=L23.0)
. ‘ _ 89,k
B =[bul, bu=0, bw = oy = G = W=D
48y x
TG =5 G —3) & — D) (a4 1n +
684,

+ Gi—5Gi—3)Ei—D@E )& F3y

_ 4 i, k-1 +
(4i — 3) (ki — 1) (4i + 1) (&6 4 3) (4i + 5)
+ 0;, k-2 (i =2,3.. )
Gi—1D &+ G+ G5 Gi+7) k=1, 2,...
Here T is an infinite diagonal matrix in which all the elements of the
leading diagonal are unity exgept the first, which 1s zero.

In addition, we introduce the vectors Uup, Ogrand ¢ defined by
Oup = (Uag)i Ud;ia)’ .. -)1 Oy = (oa.(“a C"a.m). PR -)v o= (0(1)’ O@) s » 2)
so that from {1.2) we have
o* = VQU‘H, o = V0*
Proceeding as in [1], we obtain Equations
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1/8‘1«&90(1;9 - 2/15}‘2 [Va (anG(z)ﬁ) + V{s (bxaf’u)x)} + 1/105}12 [Va (bnﬁg(x)n)+
+ VB (bmz 0»(2)7:)] -+ 1/105h2aaﬁ0(g) + I/ShVaVﬁw T 1/5paap (1-4)
QapreD) 070 — hPA' 4,50 + VoVj (@07) -+
+ Ve (B236™) + Vs (bz307)] + h*BV,V; (ac) = 0

and the homogeneous geometrical boundary condltions

B
(4& SN 2k baﬁcw} ) - b ow

— e — % = {} (na~su w=10

15 105 3 9% (1.9)
o™ 3
2hneb,pA'0P — pnpr 2z -+ hn*B _"i’ =0 (n® ~ %)
h2aBa — aapA ‘g2f = O
The corresponding static boundary conditions are
Oapnt®nf = opy, Oapns? = Ops, O,n% = Op (1.6)
Here n% are the contravariant components of the vector of the unit exter-

nal normal to the boundary of the middle plane of the plate, g% are the com-

porients of the unit tangential vector. A scalar function p 1is introduced
as in [1), and represents the characteristic deflection of the planes z2=xh.
The symbol (na f~fs’) indicates that there exist relations which can be

obtained from those quoted by replacing »n® by g% .

2. Consider a homogenecus transversely 1sotropic plater the plane of 1so~-
tropy of which colncides with the middle plane. F, F., v, v, denote the
Youngs modull and Poisson's ratlos for directions in the plane of 1sotropy
and for directions perpendicular to this plane; ¢ represents the shear
modulus for planes perpendicular to the plane of l1sotropy. The tensors of
strain coefficlents have the form

1
[{PT PP ::‘}g‘[(l + V) gx-88 — VEapBnol
Vz i 1
Qp=— - apr  bap = 37 Las, @ = - (2.1)

We introduce functions of the stresses o)zr(«n”,ang),. ..) and
GD:=(Q%1” q%gh.n). For this purpose we resolve the vector % into a poten~
tial and a rotational part, setting

0y = ty + Tq, t, = YV, D, Ty = £.4°Vp0 2.2)
® = (ta(l)! tﬁ{g}’ - ')'l TC{. = (TCL(I)’ T"a(m’ v . ‘)
Here g, ® is the mixsd form of the discriminant
e > — 2
« = 0, Ejp = — 8y = Vg = Vgngzz - 812

Substituting (2.1) and (2.2) into (1.3) and (1.4), we obtain Equations

2 ADy, + p =0 (2.3)
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Yg [ + ¥) (0af’ — Tah?) — VEapOny | + YsEh VoVgw —
— Y BEGIV, V50 + Vi EGIV, VD) —
— Y30V hEE; ' 8up AD(g) — YV, EE, "gapp = 0 (2.4)
(1 4 ) D’ (0ap ~— Tap) — VEapD '0x" — PEG1A'V VD +
+ WEvE,; ' A" (8.pAD + VoVp0.") + ERE; "BV, VAD = 0
(A = g7, Vp)

D, T, ...) denotes the tensor

hE
2+wG6

where T,5 == (T,

Dtgp = V= (€3Vedo + e5Vpd0) (2.5)

We impose the requirement that the tensor (2.5) satisfies the relation
Vptef = 12 = haVgm
We then obtain the following relation for determining « :

ER2A _
(0 ——zirgwa4)e =0 (2.6)

We now set Gap — Tap = lap. From (2.5) and (2.2) we have that
0. = lya, vﬁtaB = [*

Consequently, of the unknown functions, Equations (2.3) and (2.4) contain
only taB and p .

Thus the tensor 0,5 1s expressed as the sum of two ténsors, v, and I,
The former can be determined from Formula (2.5), in which the vector w must
satisfy Equation (2.6) and has the property that 1, =0 and that the vector
VB'r“ 1s solenoidal. The second tensor Igp 1s clracterized only by the
fadt that 1ts divergence ‘thaﬁ is a potentidl vector.

In order to express the tensor lep in terms of @d and w and obtain
equations for finding these functions, we take the contravariant derivative
of (2.4) with the subsequent contraction. As a result we obtain

14w Eh 212 ([ E Ev
;— Oy~ 5 tafyy + 5 Aw— 5 (—G- — Tz) ADgy) +
z
n/(E Ev

Ev h*Ev 4

(1 + ¥) DO — vD't,s — k2 (ﬁ ——-’) AAD+ 222 A'Ate + ¥ Baad—0
G E, E, E,

Subtracting from these equatlons the result of the contraction of (2.4)

with the metric tensor, we obtain
Dt = (1 + v) D® — REE,W,AAD

Eliminating ¢,* from (2.7) and (2.4) with the aid of thils relation we
find that
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1 — 42 dm{E Ev,(1+ %)
3\’ (Du) — TS'"('E‘ —— Ez‘ ) A(D(l) + (2'8)
wi{E Evz(i + v}
+E(?*T)A®m+ Aw =0
R T RPN e

"L'Ei(i — E;vﬁ)h‘AAB] ®=0

Ev, (1+4v) 1
**'z-gE:-—- gapP + X%w 8as Q) +

I2E h2Ev, (1 4 v)
+ 155 VaVelqy) — 1050 v « VD) -+ ‘“—”'150—5'5:“—" gDy (2.10)

— (A + V) D't = {.., v (4 + v) gapD’ + -E‘E—’vz U + v) B2ele’sVaV,d’ —
-(--—- 2v, (1 4+ v) = )}ﬁV Vpd' 4 2 (1 .—.-.vz)wv VBAB] o (2.11)

Equations {2.8), (2.9) and (2.3) from a system of equations for determin~
ing w and & , and Pormulas (2.10) and (2.11) define {f,3 1in terms of these
functions.

3. We shall solve the problem by the method of asymptotlic integration of
equations having derivatives multiplied by & small parameter [7 and 8]; the
half thickness of the plate h 1is assumed to be small compared with the
characteristic linear dimension ¢ of the middle plane, It is assumed that
the parameters of the problem and the required solution are sufficiently
smooth functions of a point on the middle plane.

We seek the Integrals of the baslc state of stress, which do not vary
rapidly {the regular terms of the asymptote), in the form of the expansions

Tos) = 12 (0, 5Y 4+ hoglfV4 L) w o=k (O - R L) (3.1)

If we now substitute {3.1) into Equations (2.3) and (2.4%) and equate to
zero the sum of terms with equal powers of h , we obtaln a recurrent sequence
of equations for determining the functions g (k) (), These equations reduce
to nonhomogeneous blharmonic equations and in a first approximation coincide
with the equations «f the theory.

In order to obtain integrals of the boundary-layer type (ordinary edge-
effects) we introduce a local orthogonal system of coordinates xl=r, x*=g
in the neighborhood of the boundary I’ of the region occupled by the middle
plane, where pr 1is the distance from polnts on the curve T slong the exter~-
nal normal and g 1s the arc~length along the curve T .

Returnig to Equations (2.6), let us take I and 4 to represent trun-
cated matrices of order m , and w to represent an m=-dimensional vector.
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We expand the Laplaclan operator [7] in the neighborhood of the boundary T
in powers of p

0% h 0 02 t 9
2A . 9 n 9 2 ({0 vt O
R*A = a2 + R 3t + h (382 R® Bt ) +... (r =nht) (32)
Here AR 1s the radlus of curvature of the curve T .
We seek the vector w of the boundary-layer type in the form of the

expansion ® = h* (0 + he® 4 .. ) (3.3)

(@ 1s an integer), If substitute (3.2) and (3.3) into Equation (2.6)
and equate to zero the sum of equal powers of h , we obtain a recurrent
sequence of ordinary linear differential equatlons wlth constant coefficients
( & appears as a parameter). It 1s required of the solutions to these equa-
tions that they are of the boundary-layer type, and to obtain them we use the
positive rdots of the characteristic equation
E)2

Pz 41 =0

This equation has m positive roots so that the lIntegrals (3.3) of the
boundary-layer type have m degrees of freedom at the boundary (for ¢ = 0).

The solution of the boundary-layer type to the homogeneous equations (2.3)
and (2.9) (with P = 0) 1s found in an analogous way

b 0 1
q)(l) = 0, CD(k) = h ((D(k)( ) + l’ch(k)( ) + .. ) (k: 2, 3, ey m) (34)
Here » 1s an Integer.
It can be shown that integrals (3.4) of the boundary-layer type have

2m — 2 degrees of freedom at the boundary (for ¢ = 0), i.e. the correspond-
ing characteristic equation has 27 — 2 roots with positive real parts.

Having determined the functions qhk) of the boundary-layer type we find
from (2.8) and (2.10) the boundary-layer functions

h (v2(1 + v) { ) i Ev, p2 . .
V=-——|———— (D t = —— —— &. vaq)(z
35 E, G (2)) af E, 3 ab-BVnVe )

The boundary-layer functions T and tég) (k=2,3,..
from Formulas (2.5) and (2.11).

., m) can be found

The regular terms of the asymptote in each approximation can be subjected
to two boundary conditions; 3m — 2 boundary conditions can be satlsfied
with the ald of integrals of the boundary-layer functions (3.3) and (3.4).
Thus, by means of the integrals obtalned we can satlisfy the 3m boundary
conditions which are obtalned from (1.5) and (1.6) by retaining in the series
(1.1) the first m terms.

The boundary conditions must be satisfied by a process of superposition

[8]. The regular terms of the asymptote and the boundary-layer functlons

are substituted in the boundary conditions of the problem and then the inte-
gers g &nd p {appearing in (3.3) and (3.4)) are selected in an appropri-
ate manner., In this way a recurrent system of linear algebraic equations can
be obtalned for finding the constants of integratlon in %3.3) and (3.4) and
the boundary conditions can be specifled for subsequently determlning the
regular terms of the asymptote. The latter, which determine the basic state
of stress in the plate, and the boundary-layer functlons, which determlne

the edge effects, are interrelated: the latter are determined by the former
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and the behavior of the boundary-layer functions m(n’ﬁhgy d%m at the boundary
determines the boundary condltions for the regular terms of the asymptote.

The asymptotlc investigation of the state of stress in a plate leads to
conclusions obtailned by other methods [9 to 12] for 1sotropic plates. Out-
slde a narrow -edge zone the error in Kirchhoff's hypotheses is of the order
of n compared with g — the characterlstlc dimension of the middle plane.
Close to the boundary the shear stresses and the stresses normal to the mid-
dle plane, namely o,, and o, which are ignored in the classical theory,
are of the same order as O,,. Therefore the error in Kirchhoff's hypo-
theses near the boundary fo@ sufficiently small A can be conslderable.

4, 1In the theory of anisotropic plates by Ambartsumlan [4 and 5] and also
in the theory by Relssner [2 and 3] one edge effect ®q, 1s taken into account.
In contrast to these theories the present study enables a solution to be found
with any finite number of edge effects.

The ordinary lilnear differential equations, to the solution of which one
reduces the derivation of the boundary-layer functions, are independent of
the geomerty of the plate and can be integrated once and for all. For pur-
poses of practlical computation it 1s sufficient to gsolve these equatlons for
small values of m since the boudary-layer functions o%k)and d’k‘for large
%k are rapldly damped and thelr effect on the basic state of stress 1is con-
siderably reduced.

An 1nvestigation of problems of bending of plates for various support con-
ditions (full fixity, simple support) shows that in the second and third
approximations the effect of the boundary-layer functions d%k)on the basic
state of stress 1s only slight. It disappears completely 1t Polsson's ratio
v, 1s zero. For example, for a circular plate of radlus ¢ under a uniform
load of intensity p and with bullt-in edges we have as a second approxima-
tlon for the deflection function

1—wv2 3
w = Th"v— 1_2%(,2 — a?) [(”® — a?) + akC] (C = const)

where 7 1s the distance from the centre of the circle.

The second term in the square brackets applies the correction to the clas-
slcal .theory which results from taking into account the boundary-layer func-
tion @, . For an isotropic plate and for v = 0.3 we have that ¢ = 0,05,
For an anisotropic plate with material properties Z/F,= T/5, v,=0.5, v =0,
E/¢ = 0.7, ¢ = 0.19.

Let us take one further example., Consider a rectangular plate (g X b)
under the actlon of a2 load gilven by

P = ¢sin (nz/ a) sin (nwy / b)

Here g is the load intensity at the centre (x = g, y = #b). The plate
is freely supported at the edges. At x = O we have that ¢,,= O and the
remainder of the boundary 1s fixed against displacements tangentlal to the
contour,

Here, in the second approximation only ®y) has an effect on the basic
state of stress. We obtain the following expression for the deflection

function w : - £ \
. nx . Yy kL s my [z na T
w=wsin =S 5% +wed U—v)*a—(z—(ﬁ—v)—a) Sm—b—[z b "
asinh(nx / b) z _ Az
_— . — ——sinh——
b sing (ma / b) b b
Here is the deflection at the center of the place as gilven by the
classicalw%heory and 4 1s a constant. The second term, which depends on
the ratio h/g, glves a correction to the classical theory. The numerical
coefficient 4 has the value 0.631 1if the edge effects are taken into
account (m = 2). According to theoriles [3 to 5] which consider one edge
effect A = ¥ 0.4~ 0.6325. Thus the second edge effect introduces only a
minor correction to the ‘value of the constant 4 . The correction of the
basic state of stress which in the other problems results from taking into
account the boundary-layer functions ®g) 1s insignificant and theorles
[3 to 5] can therefore be appllied to obtain the first correction to the basic
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state of stress as glven by the classical theory. The magnitdde of this cor-
rection increases with Increase in the ratio E/¢ end can become significant
for strongly anlsotropic plates with large values of Eyb

However, theories [3 to 5] cannot give a correct representation of the
state of stress 1in a plate close to 1ts edges mainly because they take no

account of any stress state associated with the boundary-layer function q%kr
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